Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb

نویسندگان

  • Shaina M. Short
  • Thomas M. Morse
  • Thomas S. McTavish
  • Gordon M. Shepherd
  • Justus V. Verhagen
چکیده

Respiration plays an essential role in odor processing. Even in the absence of odors, oscillating excitatory and inhibitory activity in the olfactory bulb synchronizes with respiration, commonly resulting in a burst of action potentials in mammalian mitral/tufted cells (MTCs) during the transition from inhalation to exhalation. This excitation is followed by inhibition that quiets MTC activity in both the glomerular and granule cell layers. Odor processing is hypothesized to be modulated by and may even rely on respiration-mediated activity, yet exactly how respiration influences sensory processing by MTCs is still not well understood. By using optogenetics to stimulate discrete sensory inputs in vivo, it was possible to temporally vary the stimulus to occur at unique phases of each respiration. Single unit recordings obtained from the mitral cell layer were used to map spatiotemporal patterns of glomerular evoked responses that were unique to stimulations occurring during periods of inhalation or exhalation. Sensory evoked activity in MTCs was gated to periods outside phasic respiratory mediated firing, causing net shifts in MTC activity across the cycle. In contrast, odor evoked inhibitory responses appear to be permitted throughout the respiratory cycle. Computational models were used to further explore mechanisms of inhibition that can be activated by respiratory activity and influence MTC responses. In silico results indicate that both periglomerular and granule cell inhibition can be activated by respiration to internally gate sensory responses in the olfactory bulb. Both the respiration rate and strength of lateral connectivity influenced inhibitory mechanisms that gate sensory evoked responses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Soy Milk on Histomorphometric Changes of Olfactory Bulb in Neonatal Ovariectomized RatsSprague- Dawley strain

Background & Objective: Soy milk contains isoflavones that comprises the phytoestrogens families. They have structural similarities with mammalian estrogen. This study was done to investigate the effects of soy milk on histomorphometric changes of olfactory bulb in neonatal ovariectomized rats.   Materials & Methods: Thirty female rats Sprague- Dawley strain (one-day old) were kept in a standa...

متن کامل

Lack of Pattern Separation in Sensory Inputs to the Olfactory Bulb during Perceptual Learning

Recent studies revealed changes in odor representations in the olfactory bulb during active olfactory learning (Chu et al., 2016; Yamada et al., 2017). Specifically, mitral cell ensemble responses to very similar odorant mixtures sparsened and became more distinguishable as mice learned to discriminate the odorants over days (Chu et al., 2016). In this study, we explored whether changes in the ...

متن کامل

Simultaneous single unit recording in the mitral cell layer of the rat olfactory bulb under nasal and tracheal breathing.

Odor perception depends on the odorant-evoked changes on Mitral/Tufted cell firing pattern within the olfactory bulb (OB). The OB exhibits a significant "ongoing" or spontaneous activity in the absence of sensory stimulation. We characterized this ongoing activity by simultaneously recording several single neurons in the mitral cell layer (MCL) of anesthetized rats and determined the extent of ...

متن کامل

Cortical Feedback Control of Olfactory Bulb Circuits

Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb...

متن کامل

Bulbar Microcircuit Model Predicts Connectivity and Roles of Interneurons in Odor Coding

Stimulus encoding by primary sensory brain areas provides a data-rich context for understanding their circuit mechanisms. The vertebrate olfactory bulb is an input area having unusual two-layer dendro-dendritic connections whose roles in odor coding are unclear. To clarify these roles, we built a detailed compartmental model of the rat olfactory bulb that synthesizes a much wider range of exper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016